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The equations
—udu/0x+0v[or+v/r=0, 0u/dr=273v/dx (1)

describing the axisymmetric transonic flow, were obtained by T. von
Karman [1]j. We shall apply them for the study of the peculiarities
‘of the passage through the speed of sound in Laval nogzzles with cir-
cular cross sections. With this in view, we shall assign the distri-
bution of the velocity components of particles along the nozzle axis,
i,e., at r=0, in the form

u::———Al]xl" at x<0; u=Ax" at x>0, v: 0
(A]>01 A2>0)’ (2)

We shall consider that the values of the indicator k are
included in t.he interval 1 < k < 2; in the respective gas flows,
the acoustiéﬂse the exponential curve, concave or bent on the side of
the incident flow., The problem (2) with k =1, was studied in detail
in the works [2, 3], At k =2, the passage , or transitional line
becomes straight and perpendicular to the symmetry axis of the nozzle
[4 — 6],

If densification discontinuities develop in the flows, the
solutions of the equations (1) must satisfy additional boundary condi-
tions at the wave front, apart from the initial data (2), namely
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the shock polar equation [7]

2 (ve — U3)? = (s — u3)® (Us + us) (3)
and the correlation [5]

Us dxs [ dr + v, = ugdx, [ dr + vs, (4)

equivalent to the continuity condition of the tangential component
of the velocity vector. In the ecu~tions (3) and (4), the indices refer
to parameters at different sides of the shock front, and x, = x(r) 4is
the equation giving its position.
It is easy to show that solution of the problem (2), searched
for, is self-modeling
u=rnfE), v=riengE) E=x/r", n=2/(2—Fk),

with the shock front equation having the form § =¢, -: const.

The substitution of written formulas into the system of equa-
tions (1) and the exclusion of the function g (¥) from the correlations
obtained, give for the determination of £ (§) a differential equation

of the second order
(f — n®EY) &f [ dE* + (df [ dEY + n Bn— ) Edf [dE—4(n— 1 f=0.  (5)
To simplify the gualitative inveztipation of the problem consi-

dered, we postulate [2, 3]
f=F(), dF/dn=Y¥, n=In[E] .6)

" In the new variables, the problem's (5) order lowers:

d¥ | dF = (—4F — 4n¥ — 6F* + TF¥ '¥*)/ (n* — F) Y. (7
Data (2) of Cauchy lead to the reguirement that the integral
curve of the equation (7), picturing the field of velocities in the vici-
nity of nozzle's neck, begin and end in its peculiar point A (0, 0),
which corresponds to the axis x, In the vicinity of A this curve is
given by the expansion ’
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The boundary conditions (3) and (4) in the plane F¥ will be

written
F2+F3=2n2, ‘Fg+‘l’3=—2n(7n—4). (9)

The motion along the integral curve in the plane F¥ from the
point A in the direction of the node C [n?, n (4 — 7n + ¥ 25n® — 56n + 32)/2]
describes the gas flow in the inlet part of the nozzle between the axis
x and the C_° - characteristic arriving at its center. The passing

through the point C implies the intersection of the C?-characteristic
in the ohysical plane. By subsequent integration of formulas (6), it

is easy to show that the discontinuity in the i-th derivative of the
function W(F) corresponds to discontinuities in (i + 1)derivatives

of the velocity vector components over the coordinates. That is why

the character of flow peculiarity on the C!-~ characteristic is determi-
ned by the expansion of the function Y (F) in the vicinity of the yoint C

¥ =yn(4—Tn+V BrE—56n F 37)+
tar(F—n®) +ay(F—n?? + ... 4 b,(F—n®)" + ... '(10)

Here the coefficients a; depend only on n, the constant by is arbi-
trary, and the exponent A at the first part of the irregular part is

given by the formula

h=— 2V 2B —56n 1 32/(4—Tn+ VBrE—56n +32). (1)

As is well known, the exponent X is equal to the ratio of
the roots of the characteristic equation determining the type of the
particular point C. So long as its value is distinct from a whole posi-
tive number, only one of the integrals is holomorphic, (10), according
to the theorem by [Brio and Buke]* [8]. It is obtained by equating the
arbitrary constant b3 to zero. To the contrary, at integral values of
either all the integrals of the ordinary differential equation are
representable with the aid of Taylor series, or none of them will be
holomorphic., In the latter case, the representation (10) loses its
strength, and logarithimic terms appear in it. Analysis of the equation
(7) shows, that at whole positive numbers A there is no holomorphic
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integral at the point C, i, e. the second possibility, acceptable by the
strength of the [Brio and Buke]* theorem, is materialized.

Let us plot the flows without peculiarities in the derivatives
of the velocity components over the coordinates on the C°-characteristic
with the aid of integrals correcponding to mixed values of the exponent .
In them, the current lines at intersection points with the Q}-characteri—
stic are also devoid of peculiarities, and therefore no artificial approach,
imparting a special shape to nozzle walls, is required for the materiali-
zation of analytical flows in the vicinity of the cg-characteristic.
Calculations, rapidly conducted with the aid of electron computer BESM-2,
show, that the construction of the flow field without peculiarities on a
characteristic, closing the channel intake, is indeed possible atk = 1.167,
n = 2,366 and A, = 0.629 AI In such a flow, discontinuities of the
third derivatives of velocity vector compomnent spread along the C:,-cha-
racteristic emerging from the center. Axisymmetric flows with shock
waves emerging at the center of nozzles with smooth walls do not exist,

The flow, realized at k = 1,157 and A5 =0.629 Ay, just as
the flow, analyzed in [2, 3] with k=1 and A, = Ay, has in the vicinity
of the center ¢of the nozzle 6 an asymptotic character. The peculiarities
present in it onset in the flow itself, at the point of intersection of
the acoustic line with the symmetry axis, and not in the walls; then
they are carried toward the exhaust part of the channel.

The fields of velocities are obtained essentially different in the
two indicated types of asymptotic flows. The velocity increases monotoni-
cally along each of the current lines in the flow. To the contrary, in
a gas flow with k=1,157, the distribution of velocity along the lines
of current has two relative extrema: a maximum between the acoustic line
and the (f:characteristic,and a minimum in the region included between
the C; -characteristics. In connection with that, the shape of the curves
u = const at k=1,157, will have the form shown in Fig, 1.

In all the remaining ~ontinuous as well as discontinuous flows
along the C?- characteristiec, closing the nozzike's intake, either peculi-

arities in the derivatives of velocity components propagate along
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the coordinates. In formula (11) we have A = 1, 2, 3, 4 respectively
at k=12/17,(7-+2V 2114, (26 + 25V/2)/4l1, 8 (7 + V91)/28 and n = 17/11, 4 (21 + 2V721)/51,
(56 + 251/ 2)/23, 4 (35 + 3/ 91)/29. When the values k — 2 and n ~+ 09, the
exponent A —» 5. Lence, we conclude that at 1<k% (7 + 2V'21)/14 all
the derivatives of velocity components, beginning with the third ones,
have infinite discontinuities; when (7 + 2V 21)/14 <k <C (26 -+ 25)/9)/41, the
infinite discontinuities arise in the fourth and higher derivatives; at
(26 + 25V 2)/41 < k < 3(7 + }/91):28 the infinite discontinuities have the
fifths and higher derivatives; finally, when 3 (7 4 VOIVo8 < k<2, all
the derivatives of the velocity vector components, beginning with the
sixths, undergo infinite discontinuities. At k= (7 + 2V 2114, (26 + 25 V' 2)/41,
3(7+ ¥'91)/28 tre expansion (10) loses its strength and it must be repla-

ced by an expansion containing logarithmic terms.
" l
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In order to obtain the fastest expandable flow beyond the
C:- characteristic, it is necessary to effect & jump from the point C
in the phase plame F I into the saddle DI[n?, n(4—7n — V 25n® — 56n + 32)/2],
and then move along the separatrix passing through it in the direction
of the infinitely remote point E, which is situated on the straight
line Y= —2F, and then return again along the extension of the sepa-
ratrix to the point C. The motion along the indicated integral curve of
the equation (7) in the retrograde ¢ rection from the point C to point D

through E represents the flow from all the continuous ones as the

most slowly expanding beyond the Cg_ - characteristic. The construction
of limit flows allows the finding of the region of ratio A,/Aj variation
corresponding to shockless gas flows. The boundaries of this region are

shown in Fig, 2. In flows with maximum expansion in the direction of



nozzle's exhaust, disruptions of accelerations are forming at the
C:- characteristic, and in those with minimum expansion — at the
C:_- characteristic.

In discontinuous flows the densification jump arises at the
center of the channel and then is carried downward along the flow,

For the construction of discontinuous flows we must choose such integral
curves of (7), which emerge from the point C in the direction of the
point E, and whose extensions, beginning at E, are situated below the
‘separatrix passing through the saddle D, Alomg such curves, the values
I—>— 00 at F > na, and in the corresponding gas flows there emerge
boundary lines, being envelopes of the Ci ~ characteristics and bearing
infinite values of accelerations, Since the flow with infinite accelera-
tions is physically senseless, a shoc! wave must form in it prior to the
emergence of the boundary line, But it appears to be impossible to intro-
duce a shock wave into a flow, where there are no infinite acceleratioms.
Let us note that the gas flow in the nozzle's intake is not disrupted

at the onset of the densification jump,

The flow of gas behind the demnsification jump in variables F, Y
must be plotted by a portion of the integral curve (8). Together with
the equalities (9), this condition defines the intensity of the shock
wave., For the computations it is simplest
to utilize the étraight integration of the

initial equation (5), subsequently convert-~ 10*’

ing the results in the plane FV¥. As an * o2 ,
0 1

example, we have shown in Fig, 3 the depen- A—>

dence t3— fa on the constant Ayat k =1.157.
The dependence of the coordinate ;2 of the
densification jump on the same constant is plotted in Fig. 4. The quan-

Fig. &4

tity A, was so selected that the position of the C? -characteristic be
determinable by the equality _§1== — 1. In order to induce the appear-
ance of the shock wave directly at the point of intersection of the
acoustic curve with the axis of the circular nozzle, it it necessary

to send there perturbations along the C_"_— characteristic. Truly, however,
the indicated perturbations can be very weak, Thus the gas flows with
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k = (7 -+ 2VZI)/14, (26 +-25V/2)/41, 3(7+ V91)/28 provide examples of shock
wave formation as a result of reflection from the center of the nozzle
of logarithmic peculiarities respectively in the thirds, fourths and
fifths derivatives of velocity components over the coordinates. It must
be stressed that the peculiarities, introduced to the center along the
C_- characteristie, do not have any essential significance for the ana-
lysis of the causes of shock wave formation in the vicinity of the res-
triction (narrowing) of the channel, Skock wave arise as a result of
appearance of an enveloppe at characteristics emerging from points of
the acoustic line and inclined downward along the flow, If the field of
velocities preserves its analytical character at crossing the C_ -charac-
terustic, but in the whole corresponds tc the nozzle, in which a conti-
nuous flow cannot be achieved, the densification jump onsets somewhat
to the right of the transitional line in the supersonic region.

It follows from Fig. 2, that shock waves form in the flows only
when the values of the ratio A.Z/A1 becomes lower than a specific limit,
Hence, it is easy to obtain, that constructively, the formation of shock
waves near the critical cross section of the nozzle is linked with
too prolonged transitional part. Thus, when constructing nozzles, the
transitional part should be made as short as possible; the increase of
distance between the neck and the intake of the channel leads to a
slower expansion of the flow, and, in the end, to the appearnace bf
discontinuities, In the limitcase, the velocity behind the densification
jump is equal in magnitude to the critical one and is directed along
the axis of symmetry of the nozzle.

k2% THE END #%x%x=»
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